Calibration Protocol for Gas Chromatography – Shimadzu

Instrument Calibration Protocol for Gas Chromatography – Shimadzu

INSTRUMENTGas chromatography (Shimadzu)
Instrument code no. 
Ref. SOP No. 
Make / Model No.                         
Calibration FrequencyHalf Yearly “-15 days”.
Date of Calibration               
Next Due Date 

1. Flow rate calibration:

Flow Meter ID: ___________________]

Set flow rate (mL / min)Observed flow rate (mL /min) – 1Observed flow rate (mL /min) – 2Observed flow rate (mL /min) – 3Mean flow rate (mL / min)Acceptance criteria (mL / min)
5 mL    4.75 to 5.25
20 mL    19.0 to 21.0
30 mL    28.5 to 31.5
40 mL    38.0 to 42.0
50 mL    47.5 to 52.5

Done By:                                                                           Checked By:

2. Verification of temperature:

a. Column oven:

Instrument used for Calibration:

Instrument No. / Code No.        

Calibration Date

Next Due Date of Calibration                              

Sr. No.Set TemperatureTemperature observed on displayTemperature observed on CalibratorLimits
 30 °C  30 °C ± 2 °C
 50 °C  50 °C ± 2 °C
 100 °C  100 °C ± 2 °C
 150 °C  150 °C ± 2 °C
 200 °C  200 °C ± 2 °C
 250 °C  250 °C ± 2 °C
 350° C  350 °C ± 2 °C

b. Injector:

Sr. No.Set Temperature Injector ASet Temperature Injector BTemperature observed on display Injector ATemperature observed on display Injector BLimits
1.50 °C50 °C  50 °C ± 2 °C
2.100 °C100 °C  100 °C ± 2 °C
3.150 °C150 °C  150 °C ± 2 °C
4.200 °C200 °C  200 °C ± 2 °C
5.250 °C250 °C  250 °C ± 2 °C
6.300 °C300 °C  300 °C ± 2 °C
7.350° C350° C  350 °C ± 2 °C

c. Detector:

Sr. No.Set Temperature FID ASet Temperature TCD BTemperature observed on display FID ATemperature observed on display TCD BLimits
1.50 °C50 °C  50 °C ± 2 °C
2.100 °C100 °C  100 °C ± 2 °C
3.150 °C150 °C  150 °C ± 2 °C
4.200 °C200 °C  200 °C ± 2 °C
5.250 °C250 °C  250 °C ± 2 °C
6.300 °C300 °C  300 °C ± 2 °C
7.350 °C350 °C  350 °C ± 2 °C

Done By:                                                                   Checked By:

3. Auto Injector and Detector Calibration :

a. Calibration of FID by Linearity Measurement. (By Using Capillary column):

Solvent NameBatch No.Calibration Standard No.Purity in %Use Before
Tetrahydrofuran    
Isopropyl alcohol    
Dimethylformamide    

(a) THF Internal standard (IS) solution preparation: Take ______ (1.0 gm) of ____________________ Tetrahydrofuran in a ________ (50ml) volumetric flask containing 10ml of DMF and dilute up to mark with __________DMF.

(b) Sample preparation

Stock solution: Weigh accurately _______( 2.0 g) of Isopropyl alcohol standard in a ______(50 ml) volumetric flask containing about 10 ml of DMF, dilute up to mark with ________DMF.

Further dilute this to prepare the different concentration as below,

  • 800 ppm: Take _______(1.0 ml of stock solution) and _______(2.0 ml) of THF (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________DMF.
  • 1600 ppm: Take _______(2.0 ml of stock solution) and _______(2.0 ml) of THF (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________DMF.
  • 2400 ppm: Take _______(3.0 ml of stock solution) and _______(2.0 ml) of THF (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________DMF.
  • 3200 ppm: Take _______(4.0 ml of stock solution) and _______(2.0 ml) of THF (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________DMF.
  • 4000 ppm: Take _______(5.0 ml of stock solution) and _______(2.0 ml) of THF (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________DMF.

(c) Chromatographic condition :

ParameterTest ConditionsApplied Conditions
Column No.  
ColumnAT-5 (30m x 0.53mm x 5.0µ) or Equivalent 
Oven temperature100°C-2 min.- @ 30°C/min. 250°-1min. 
DetectorFlame Ionization detector (FID) 
Detector Temperature270°C 
Head pressure30 kpa 
Injection volume1.0 µl 
Split ratio1:40 
Injector temperature200°C 
Run time8 min. 

(d) Calibration procedure:

  • Set up the instrument as per the conditions.
  • Inject the samples three times from each solution and calculate the ratio of IPA and THF. Record the observation in table below.
  • Calculate the %RSD of mean ratio. It should not be more than 10.0%.
  • Plot a linearity curve of concentrations Vs corresponding mean area ratio, using least square method. Calculate the correlation coefficient (r) and record the observations in a table below.

(e) Observation Table

Concentration of IPAArea of IPA        XArea of THF YArea Ratio X/YMean Area Ratio and % RSD
800 ppm    
    
    
1600 ppm    
    
    
2400 ppm    
    
    
3200 ppm    
    
    
4000 ppm    
    
    

Correlation Coefficient _____________ (Limit: NLT 0.990)

(f) Result: Complies / does not comply

Done By:                                                                   Checked By:

b. Calibration of FID by Linearity Measurement. (By Using Pack column):

Solvent NameBatch No.Calibration Standard No.Purity in %Use Before
Ethyl alcohol    
Isopropyl alcohol    
WaterUltra Purified (Milli-Q)

(a) IPA Internal standard (IS) solution preparation: Weigh accurately _____________ (5.0 g) of Isopropyl alcohol standard in _______ (50 ml) volumetric flask containing 10 ml of water, dilute up to mark with ___________ water.

(b) Sample preparation

Stock solution: Weigh accurately _____________ (5.0 g) of ethyl alcohol standard in _______ (50 ml) volumetric flask containing 10 ml of water, dilute up to mark with ___________ water.

Further dilute this to prepare the different concentration as below,

  • 2000 ppm: Take _______(1.0 ml) of stock solution and _______(5.0 ml) of IPA (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________water.
  • 4000 ppm: Take _______(2.0 ml) of stock solution and _______(5.0 ml) of IPA (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________water.
  • 6000 ppm: Take _______(3.0 ml) of stock solution and _______(5.0 ml) of IPA (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________water.
  • 8000 ppm: Take _______(4.0 ml) of stock solution and _______(5.0 ml) of IPA (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________water.
  • 10000 ppm: Take _______(5.0 ml) of stock solution and _______(5.0 ml) of IPA (IS) in ______(50 ml) volumetric flask, dilute up to mark with ________water.

(c) Chromatographic condition :

ParameterTest ConditionsApplied Conditions
Column No.  
ColumnPorapak Q – 80 / 100#, 2M, S.S. Column. 
Carrier gasNitrogen 
Flow rate50 ml/min 
DetectorFID 
Column temperature180°C 
Injector temperature250°C 
Detector temperature250°C 
Injection volume1.0 µl 
Run Time15.0 min 

(d) Calibration procedure:

  • Set up the instrument as per the conditions.
  • Inject the samples three times from each solution and calculate the ratio of

Ethyl alcohol and IPA. Record the observation in table below.

  • Calculate the %RSD of area ratio at each level. It should not be more than 10.0 %.
  • Plot a linearity curve of concentrations Vs corresponding mean area ratio, using least square method. Calculate the correlation coefficient ® and record the observations in given table.

(e) Observation Table:

Concentration of Ethyl alcoholArea of Ethyl alcohol XArea of IPA YArea Ratio X/YMean Area Ratio and % RSD
2000 ppm    
   
   
4000 ppm    
   
   
6000 ppm    
   
   
8000 ppm    
    
    
10000 ppm    
   
   

Correlation Coefficient: _____________ (Limit: NLT 0.990)

(f) Result : Complies / Does not comply

Done By:                                                                   Checked By:

c. Calibration of Auto Injector by Linearity Measurement. (By Using FID with Capillary column):

Solvent NameBatch No.Calibration Standard No.Purity in %Use Before
Tetrahydrofuran    
Dimethylformamide    

(a) Standard stock solution: Weigh accurately _______(1.0 g) of Tetrahydrofuran (THF) standard in ______(50ml) volumetric flask containing 10 ml of DMF, dilute up to mark with ________DMF.

Standard / Sample solution Preparation: Take _______(2.0 ml) of stock solution in ______(50ml) volumetric flask containing 10 ml of DMF, dilute up to mark with ________DMF.

(b) Chromatographic condition :

ParameterTest ConditionsApplied Conditions
Column No.  
ColumnAT-5 (30m X 0.53mm X 5.0µ) or Equivalent 
Oven temperature100°C – 2 min. – @ 30°C/min.-250°-1min. 
Detector temperature270°C – Flame Ionization detector (FID) 
Carrier gasNitrogen 
Head pressure30 kpa 
Injection volume0.5µl, 1.0µl, 2.0µl, 5.0µl 
Split ratio1:40 
Injector temperature200°C 
Run time8 min. 

(c) Calibration procedure:

  • Inject the sample with injection volume 0.5µl, 1.0µl, 2.0µl, 5.0µl.
  • Inject each volume three times and record the observation in table.
  • Calculate the %RSD of area at each volume. It should not be more than 10.0 %
  • Plot the graph of injection volume vs. mean area of each volume, and calculate the correlation coefficient (r). It should not be less than 0.990.

(d) Observation Table

Injection Volume (µl)Area of Tetrahydrofuran  Mean Area% RSD (NMT 10.0 %)
0.5 µl   
   
   
1.0 µl   
   
   
2.0 µl   
   
   
5.0 µl   
   
   

Correlation Coefficient _________________ (Limit: NLT 0.990)

(e) Result: Complies / Does not comply

Done By:                                                                   Checked By:

d. Calibration of Auto Injector by Linearity Measurement. (By Using FID with Pack column):

Solvent NameBatch No.Calibration Standard No.Purity in %Use Before
Isopropyl alcohol    
WaterUltra Purified (Milli-Q)

(a) Sample / Standard stock solution:

Weigh accurately _______(5.0 g) of Isopropyl alcohol standard in ______(50ml) volumetric flask containing 10 ml of water, dilute up to mark with ________water.

Take _______(3.0 ml of stock solution) in ______(50 ml) volumetric flask, dilute up to mark with ________water.            

(b) Chromatographic condition:

ParameterTest ConditionsApplied Conditions
Column No.  
ColumnPorapak Q – 80 / 100#, 2M, S.S. Column. 
Carrier gasNitrogen 
Flow rate50 ml /min 
DetectorFID 
Column temperature180°C 
Injector temperature250°C 
Detector temperature250°C 
Injection volume0.5µl, 1.0µl, 2.0µl, 5.0µl 
Run time15.0 min. 

(c) Calibration procedure:

  • Set up the instrument as per the conditions.
  • Inject the sample 0.5µl, 1.0µl, 2.0µl, 5.0µl each three times. (Calculate the area of IPA. Record the observation in below table.
  • Calculate the %RSD of area for each injection volume. It should not be more than 10.0 %.
  • Plot a linearity curve of Injection volume Vs corresponding mean area, using least square method. Calculate the correlation coefficient ® and record the observations in given below table.

(d) Observation Table:

Injection Volume (µl)Area of Isopropyl alcoholMean Area% RSD (NMT 10.0 %)
0.5 µl   
   
   
   
1.0 µl   
   
   
   
2.0 µl   
   
   
   
5.0 µl   
   
   
   

Correlation Coefficient _______________ (Limit: NLT 0.990)

(e) Result: Complies / Does not comply

Done By:                                                                   Checked By:

e. Calibration of TCD by Linearity Measurement. (By Using Pack column):

Solvent NameBatch No.Calibration Standard No.Purity in %Use Before
Isopropyl alcohol    
Acetone    

(a) Standard preparation:

Prepare the different Linearity preparations by mixing of IPA and Acetone (internal standard) as specified in the below table.

Linearity PreparationVolume of IPA (ml)Volume of Acetone (ml) IS
1___________(1 ml)___________(2 ml)
2___________(2 ml)___________(2 ml)
3___________(3 ml)___________(2 ml)
4___________(4 ml)___________(2 ml)
5___________(5 ml)___________(2 ml)

(b) Chromatographic condition :

ParameterTest ConditionsApplied Conditions
Column No.  
Column10% PEG, 2 meter x 1/8” diameter, mesh rang 80-100 
Carrier gasHelium / Hydrogen 
Flow rate45 ml /min 
Column temperature55°C 
Injector temperature100°C 
Detector temperature160°C 
Current80 mA 
Injection Volume1 µl 
Run time10 min. 

(c) Calibration procedure:

  • Set up the instrument as per the conditions.
  • Inject each Linearity preparation in triplicate; calculate the mean area ratio of IPA to Internal standard Acetone.
  • Calculate the %RSD of triplicate area ratio of IPA to Internal standard Acetone. It should not be more than 10.0%.
  • Plot the graph of Concentration in ml Vs Corresponding mean area ratio of IPA /Acetone (IS) and calculate the Correlation coefficient (r) and it should not be less than 0.990.
  • Record the all observations in the following table.

(d) Observation Table:

Volume of IPA (ml)Area of IPA        XArea of Acetone YArea Ratio X/YMean Area Ratio and % RSD
1.0 ml    
   
   
2.0 ml    
   
   
3.0 ml    
   
   
4.0 ml    
   
   
5.0 ml    
   
   

Correlation Coefficient ____________________ (Limit: NLT 0.990)

(e) Result: Complies / Does not comply

Done By:                                                                   Checked By:

Remarks: The instrument is calibrated & qualified / Out of calibration & not qualified for use.

Calibrated ByChecked ByApproved By
Signature     
Date   
Name   
DepartmentQuality ControlQuality ControlQuality Control
Scroll to Top